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L E T T E R  T O  T H E  E D I T O R  

T H E R M A L  F L A T - P L A T E  B O U N D A R Y - L A Y E R  

S O L U T I O N S  F O R  A T W O - P H A S E  S U S P E N S I O N  

W I T H  A F I N I T E  V O L U M E  F R A C T I O N  

The problem of steady boundary-layer flow of a particulate suspension past a semi-infinite flat plate 
has been investigated by many authors (e,g. Prabha & Jain 1980; Osiptsov 1980; Chamkha & 
Peddieson 1991). All these investigators concluded that the particle-phase volume fraction becomes 
infinite at the plate surface. This conclusion violates the small volume fraction assumption inherent 
in the dusty-gas model employed in the analysis of this problem. Chamkha & Peddieson (1991) 
showed that this singularity can be eliminated by the inclusion of  particle-phase diffusivity in the 
dusty-gas equations. 

Recently, Chamkha & Peddieson (1992) employed a more general model allowing for finite volume 
fractions and particle-phase stresses and found, in contrast to the work mentioned above, that the 
volume fraction is constant in the boundary layer. This conclusion was obtained by using the most 
obvious order-of-magnitude analysis in developing the boundary-layer equations. Based on this 
model, solutions for the problem titled above are reported herein. The fluid phase is assumed to be 
incompressible and has constant properties. It is also assumed that there is no radiative heat transfer 
from one particle to another. 

The dimensionless boundary-layer form of the energy equations can be written as 

~ H  - P r G d , H  + PrEc(~9~F) 2 - 2~ (1 - ~)PrFc3eH 

+ 2 ~ x P r ( y E ( H  v - H )  + Ec(Fp - F)2)/(1 - ~) = 0, 

Gpd,Hp - Ec f l  / y ( ~ F p )  z + 2¢(1 - ¢)FpO¢Hp - 2 ¢ e ( n  - Hp)/(1 - ¢) = 0. [1] 

In [1], ~ and r/are dimensionless tangential and normal coordinates, respectively; F and H are the 
fluid-phase tangential velocity and temperature (nondimensionalized by the free stream tempera- 
ture), respectively; Fp, G v and Hp are the particle-phase tangential velocity, transformed normal 
velocity and temperature, respectively, t ,  x, Pr, Ec, ? and E are the viscosity ratio, particle loading, 
fluid-phase Prandtl number, Eckert number, specific heat ratio and the temperature inverse Stokes 
number, respectively. 

The boundary and matching conditions are 

H(~, 0) = H0, H(~, r/)---,1, Hp(~, r/)----,1 as r/--~ ~ ,  [2] 

where H0 is a dimensionless wall temperature. 
The wall heat transfer coefficient is defined as 

ew(~) = - ~,H(¢, 0)/(PrEc). [3] 

Some numerical results of  [ 1 }-{3] [using the flow solutions given by Chamkha & Peddieson (1992)] 
are reported graphically in figures 1-3 to illustrate the influence of  x,/~ and n (a constant related to 
particulate wall slip) on qw, respectively. It can be seen from figure 1 that the wall heat transfer 
increases as the particle loading increases. This is due to the increase in the interaction between the two 
phases in which the fluid gains kinetic and thermal energy from the particles. Figure 2 shows that 
increases in the values of/~ cause a decrease in the values of~w over a small range of  the wall position 
(where particle-phase wail slip exists) followed by an increase in the values of  ~,~ over most of  the plate 
(where a no-slip condition on the particle phase exists). It should be mentioned that the rate of  
transition from perfect particulate slip at ~ = 0 to a no-slip condition at ~ = 1 is controlled by the 
values of  co 0 [particulate wall slip coefficient, see Chamkha & Peddieson (1992)] and n. It can be seen 
in figure 3 that the dips in ~,, move upstream as n decreases. This is associated with the fact that the 
region of  significant particulate wall slip decreases with decreasing n. 
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Figure 1. Wall heat transfer coefficient vs position. 
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Figure 2. Wall heat transfer coefficient vs position. 
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Figure 3. Wall heat transfer coefficient vs position. 
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The conclusion that the particle volume fraction is constant in the boundary layer represents one 
(of many) way of  modeling this problem depending on the order-of-magnitude assumptions used 
to develop the governing equations. In the absence of experimental data, it is difficult to evaluate 
the validity of  these assumptions. It is hoped that the flexibility that the present model offers will 
serve as a stimulus for experimental work and a useful vehicle for the investigation of  alternate 
particle-phase stress models. 
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